Defective Transcription-Coupled Repair in Cockayne Syndrome B Mice Is Associated with Skin Cancer Predisposition

نویسندگان

  • Gijsbertus T.J van der Horst
  • Harry van Steeg
  • Rob J.W Berg
  • Alain J van Gool
  • Jan de Wit
  • Geert Weeda
  • Hans Morreau
  • Rudolf B Beems
  • Coen F van Kreijl
  • Frank R de Gruijl
  • Dirk Bootsma
  • Jan H.J Hoeijmakers
چکیده

A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Other CS features thought to involve the functioning of basal transcription/repair factor TFIIH, such as growth failure and neurologic dysfunction, are present in mild form. In contrast to the human syndrome, CSB-deficient mice show increased susceptibility to skin cancer. Our results demonstrate that transcription-coupled repair of UV-induced cyclobutane pyrimidine dimers contributes to the prevention of carcinogenesis in mice. Further, they suggest that the lack of cancer predisposition in CS patients is attributable to a global genome repair process that in humans is more effective than in rodents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleotide excision repair and human syndromes.

DNA damage is implicated in cancer and aging, and several DNA repair mechanisms exist that safeguard the genome from these deleterious consequences. Nucleotide excision repair (NER) removes a wide diversity of lesions, the main of which include UV-induced lesions, bulky chemical adducts and some forms of oxidative damage. The NER process involves the action of at least 30 proteins in a 'cut-and...

متن کامل

The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex.

Transcription-coupled repair (TCR), a subpathway of nucleotide excision repair (NER) defective in Cockayne syndrome A and B (CSA and CSB), is responsible for the preferential removal of DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. Here we demonstrate by microinjection of antibodies against CSB and CSA gene products into living pr...

متن کامل

Reactive oxygen species generated by thiopurine/UVA cause irreparable transcription-blocking DNA lesions

Long-term treatment with the anticancer and immunosuppressant thiopurines, azathioprine or 6-mercaptopurine, is associated with acute skin sensitivity to ultraviolet A (UVA) radiation and a high risk of skin cancer. 6-thioguanine (6-TG) that accumulates in the DNA of thiopurine-treated patients interacts with UVA to generate reactive oxygen species. These cause lethal and mutagenic DNA damage. ...

متن کامل

ATP-Dependent Chromatin Remodeling by Cockayne Syndrome Protein B and NAP1-Like Histone Chaperones Is Required for Efficient Transcription-Coupled DNA Repair

The Cockayne syndrome complementation group B (CSB) protein is essential for transcription-coupled DNA repair, and mutations in CSB are associated with Cockayne syndrome--a devastating disease with complex clinical features, including the appearance of premature aging, sun sensitivity, and numerous neurological and developmental defects. CSB belongs to the SWI2/SNF2 ATP-dependent chromatin remo...

متن کامل

Transcription-Coupled Repair of 8-oxoguanine: Requirement for XPG, TFIIH, and CSB and Implications for Cockayne Syndrome

Analysis of transcription-coupled repair (TCR) of oxidative lesions here reveals strand-specific removal of 8-oxo-guanine (8-oxoG) and thymine glycol both in normal human cells and xeroderma pigmentosum (XP) cells defective in nucleotide excision repair. In contrast, Cockayne syndrome (CS) cells including CS-B, XP-B/CS, XP-D/CS, and XP-G/CS not only lack TCR but cannot remove 8-oxoG in a transc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 89  شماره 

صفحات  -

تاریخ انتشار 1997